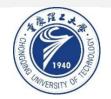
LaSSL: Label-guided Self-training for Semi-supervised Learning

Zhen Zhao¹, Luping Zhou^{1*}, Lei Wang², Yinghuan Shi^{3*}, Yang Gao³

¹ School of Electrical and Information Engineering, University of Sydney, Australia
² School of Computing and Information Technology, University of Wollongong, Australia
³ National Key Laboratory for Novel Software Technology, Nanjing University, China
{zhen.zhao, luping.zhou}@sydney.edu.au, leiw@uow.edu.au, {syh,gaoy}@nju.edu.cn

(AAAI-2022)

code: https://github.com/zhenzhao/lassl



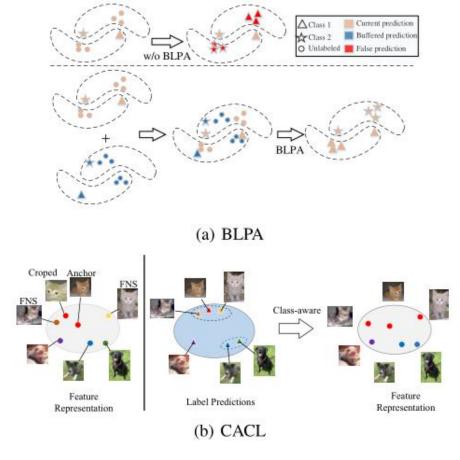
- 1. Introduction
- 2. Approach
- 3. Experiments

Introduction

we propagate the labels from the labeled samples to the unlabeled ones across the underlying data manifold via the label propagation algorithm (LPA) at the feature-embedding level.we could take advantage of the correlation between the labeled and unlabeled samples to improve pseudo-label generation.

LaSSL explores a better feature embedding through a proposed class-aware contrastive loss, so that the same-class samples are gathered and the different-class samples are scattered.

Buffer-aided Label Propagation Algorithm

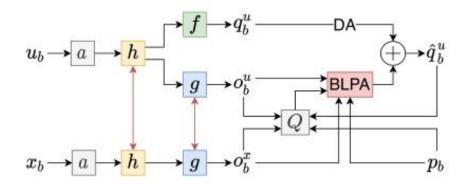


Class-aware Contrastive Loss

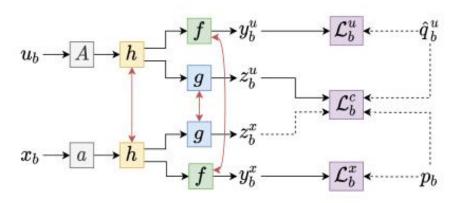
ogy

ATAI
Advanced
Technique of
Artificial
Intelligence

Approach



(a) Inference Phase.



(b) Training Phase.

a weak augmentations

A strong augmentations

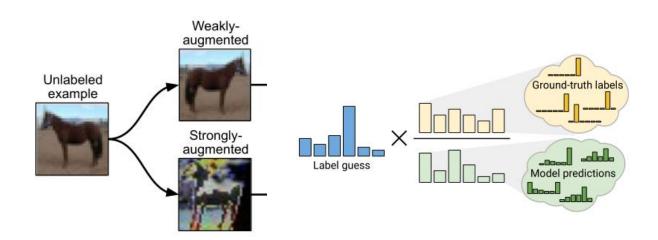
h encoder

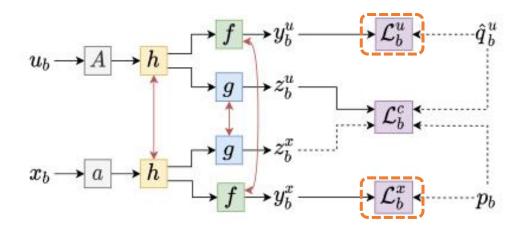
f predictor

g projector to learn feature representations.

DA(distribution alignment)

Q:queue





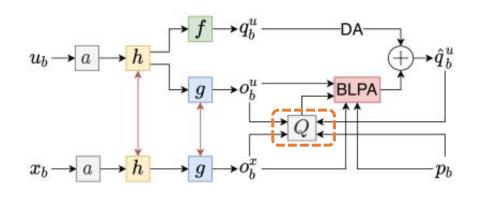
(b) Training Phase.

Let (x_b, p_b) be a batch of B labeled samples and u_b be a batch of μB unlabeled samples where μ denotes the size ratio of x_b to u_b .

$$\mathcal{L}_b^x = H(p_b, y_b^x) \tag{1}$$

$$\mathcal{L}_b^u = \mathbf{1}(\max(\hat{q}_b^u) \ge \tau) H(\hat{q}_b^u, y_b^u)$$
 (2)

where $\mathbf{1}(\cdot)$ retains the pseudo-labels whose maximum probability is higher than a predefined threshold τ , i.e. high-



(a) Inference Phase.

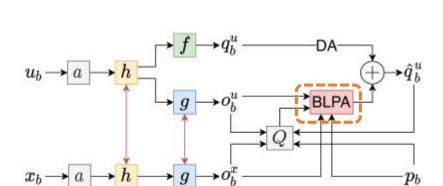
$$Q_i = \{(o_b, q_b)\} \qquad o_b \in \{o_b^u\} \cup \{o_b^x\}, q_b \in \{\hat{q}_b^u\} \cup \{p_b\}$$

high-confidence labels can inevitably include errors. In order to decrease the noise, we do K random sampling with replacement on the dequeue data (i.e. bagging), and denote each sampling result as $o_{b-1}(k)$ and $q_{b-1}(k)$, where k = 1, 2, ...K. After that, we can split the sampling data with

$$q_{b-1}^{high}(k) = \mathbf{1}(\max(q_{b-1}(k)) \ge \tau) \, q_{b-1}(k), \tag{3}$$

$$o_{b-1}^{high}(k) = \mathbf{1}(\max(q_{b-1}(k)) \ge \tau) o_{b-1}(k),$$
 (4)

$$o_{b-1}^{low}(k) = \mathbf{1}(\max(q_{b-1}(k)) < \tau) o_{b-1}(k).$$
 (5)



(a) Inference Phase.

$$o_s(k) = [o_b^x, o_{b-1}^{high}(k)], o_t(k) = [o_b^u, o_{b-1}^{low}(k)],$$

$$q_s(k) = [p_b, q_{b-1}^{high}(k)].$$

$$\widetilde{\Omega}(k) = D^{-1/2}\Omega(k)D^{1/2} \tag{6}$$

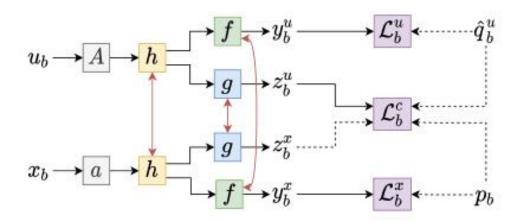
$$\Phi_{j+1}(k) = \alpha \widetilde{\Omega}(k) \Phi_j(k) + (1 - \alpha) q_s(k) \tag{7}$$

$$\Phi^*(k) = (I - \alpha \widetilde{\Omega}(k))^{-1} q_s(k). \tag{8}$$

 $\phi_b(k) = \Phi^*(k)[: \mu B]$. μ denotes the size ratio of x_b to u_b .

$$\widetilde{q}_b^u = \frac{1}{K} \sum_{k=1}^K \phi_b(k). \tag{9}$$

$$\hat{q}_b^u = \eta \tilde{q}_b^u + (1 - \eta) \bar{q}_b^u, \tag{10}$$

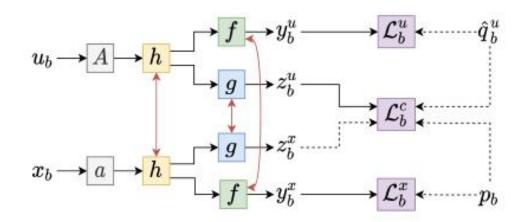


(b) Training Phase.

$$\hat{y} = [p_b, \hat{q}_b^u]$$

$$\omega_{i,j} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \text{ and } \hat{y}_i \cdot \hat{y}_j < \varepsilon \\ \hat{y}_i \cdot \hat{y}_j, & \text{if } i \neq j \text{ and } \hat{y}_i \cdot \hat{y}_j \ge \varepsilon \end{cases}$$
(11)

$$\mathcal{L}_{b}^{c} = -\sum_{i=1}^{|\hat{y}|} \log \frac{\sum_{j=1}^{|\hat{y}|} \omega_{i,j} \exp(z_{i} \cdot z_{j}/T)}{\sum_{j=1, j \neq i}^{|\hat{y}|} \exp(z_{i} \cdot z_{j}/T)}.$$
 (12)



(b) Training Phase.

$$\mathcal{L}_b = \mathcal{L}_b^x + \lambda_u \mathcal{L}_b^u + \lambda_c \mathcal{L}_b^c, \tag{13}$$

$$\lambda_c = \begin{cases} \lambda_c^0, & \text{if } t \le T_r, \\ \lambda_c^0 \exp\left(-\frac{(t - T_r)^2}{2(T_t - T_r)}\right), & \text{otherwise.} \end{cases}$$
(14)

Methods	CIFAR-10		CIFA	R-100	SVHN	
	40 labels	250 labels	400 labels	2500 labels	40 labels	250 labels
Π-Model*	(4)	45.74±3.87	2	42.75±0.48	<u> </u>	81.04±1.92
Pseudo-label*	-	50.22 ± 0.43	-2	42.62 ± 0.46	2	79.79 ± 1.09
Mean-Teacher*	-	67.68 ± 2.30	-	46.09 ± 0.57	-	96.43 ± 0.11
MixMatch*	52.46 ± 11.50	88.95 ± 0.86	33.39 ± 1.32	60.06 ± 0.37	57.45 ± 14.53	96.02 ± 0.23
UDA*	70.95 ± 5.93	91.18 ± 1.08	40.72 ± 0.88	66.87 ± 0.22	47.37 ± 20.51	94.31 ± 2.76
ReMixMatch*	80.90 ± 9.64	94.56 ± 0.05	55.72 ± 2.06	72.57 ± 0.31	96.64 ± 0.30	97.08 ± 0.48
FixMatch*	86.19 ± 3.37	94.93 ± 0.65	51.15 ± 1.75	71.71 ± 0.11	96.04 ± 2.17	97.52 ± 0.38
ACR [†]	92.38	95.01	7	## ## ## ## ## ## ## ## ## ## ## ## ##	ā	1 5
SelfMatch [†]	93.19 ± 1.08	95.13 ± 0.26	-	-	96.58 ± 1.02	97.37 ± 0.43
CoMatch [†]	93.09 ± 1.39	95.09 ± 0.33	-	-	-	-
Dash [†]	86.78 ± 3.75	95.44 ± 0.13	55.24 ± 0.96	$72.82 {\pm} 0.21$	$96.97{\pm}1.59$	97.83 ± 0.10
LaSSL	95.07 ± 0.78	95.71 \pm 0.46	62.33±2.69,	$\textbf{74.67} \pm \textbf{0.65}$	96.91±0.52	97.85 ± 0.13

Table 1: Top-1 testing accuracy (%) for CIFAR-10, CIFAR-100 and SVHN on 5 different folds. All the related works are sorted by their publication date. Results with * was reported in FixMatch (Sohn et al. 2020), while results with † comes from the most recent papers (Kim et al. 2021; Li, Xiong, and Hoi 2020; Xu et al. 2021; Abuduweili et al. 2021), respectively.

Method	CACL	BLPA	DA	Quantity	Quality	Accuracy
Vanilla	X	X	×	83.91	81.98	75.54
LaSSL-v1	✓	X	×	88.66	89.38	85.50
LaSSL-v2	/	✓	×	89.08	94.31	90.24
LaSSL-v3	×	×	1	85.73	94.90	90.42
LaSSL-v4	/	×	1	87.46	94.89	91.11
LaSSL-v5	1	1	1	87.03	95.33	91.65

Table 2: Ablation studies on CIFAR-10 with 40 labeled data after training 100 epochs (random seed is fixed to 1.)

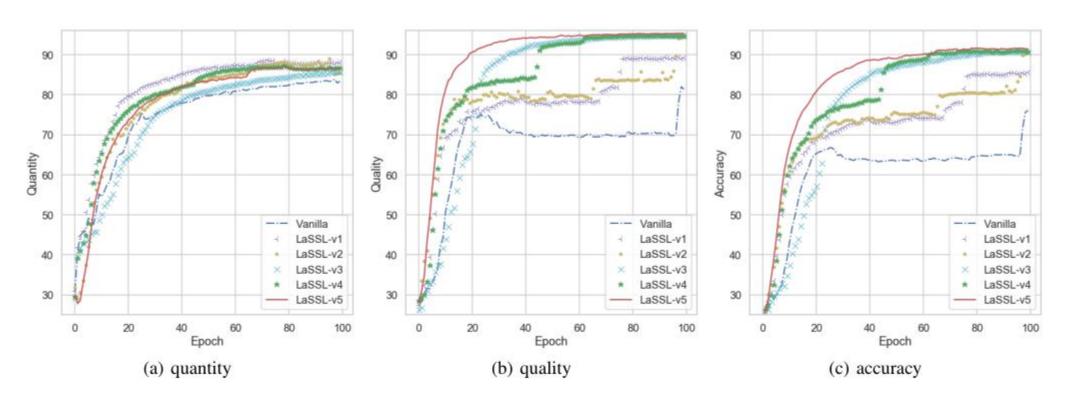


Figure 3: (a), (b), (c) represent curves of the quantity, quality, and EMA test accuracy of different combinations of CACL, BLPA, and DA (better view on screen). Numerical results are listed in Table 2.

arepsilon	0.6	0.7	0.8	0.9	1.0
Accuracy(%)	87.64	89.39	87.70	87.36	85.17

Table 3: Effects with different similarity thresholds. The similarity is equal to 1 only when comparing the image instance with itself. Therefore, we use $\varepsilon = 1.0$ to investigate the effect of excluding the "class-aware" technique.

K	O	1	3	5	7
Accuracy(%)	92.71	92.10	94.64	93.43	94.87

Table 4: Effects with different number of samplings. In specific, K=0 means the plain LPA without "buffer-aided"; K=1 means exploiting the buffered data directly without sampling; while K>1 investigates the complete BLPA.

Thank you!